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ABSTRACT
CAD geometries are most often exchanged between analysis tools using NURBS
patches to represent the boundary (BRep). We present a method where the con-
trol points of the BRep are used to automatically derive parametrisations suitable
for shape optimisation with gradient-based methods. Particular focus is on ensur-
ing geometric continuity between the NURBS patches, which is achieved through
formulation of discrete constraints. Design variables then arise from formulating an
orthogonal basis to the remaining design space using a singular value decomposition
(SVD). The manuscript presents the extension of earlier work on B-spline surfaces
to full NURBS surfaces and investigates the effect of the cut-off threshold of the
SVD on the optimisation results. To enable routine automatic use, an estimation of
the effective rank is proposed which allows to automatically determine the suitable
cut-off threshold. The effectiveness of the algorithm is demonstrated for the min-
imisation of total pressure loss over a section of an automotive climate duct, and a
U-bend cooling channel.

KEYWORDS
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1. Introduction

In many engineering applications, further improvements in performance or reductions
in environmental impact can only be achieved by considering large design spaces with
very many design variables. Gradient-based methods have shown to have a convergence
rate to the optimum that is near-independent of the number of design variables, hence
are suitable for applications with large design spaces. The state of the art to compute
gradients for expensive computational models such as CFD is the adjoint approach
which computes the entire gradient vector of a single objective function with respect to
all design variables in a single computation. Adjoint CFD is now well established with
all major code vendors offering adjoint CFD codes, as well as a number of open-source
offerings.

The choice of parametrisation determines the design space and hence affects the
outcome of the optimisation. The use of adjoint methods removes obstacles arising from
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the computational cost of gradient computation and allows to consider a much wider
range of parametrisation approaches, many have been presented and compared in the
literature (Samareh 2001; Mousavi, Castonguay, and Nadarajah 2007; Masters et al.
2017), and their advantages and disadvantages are briefly reviewed in the following
paragraph.

Node-based methods use the displacement of surface nodes of a given mesh and
provide the richest design space the Computational Fluid Dynamics (CFD) mesh can
express. This design space includes unwanted highly oscillatory modes which are in
general not adequately damped by the CFD solver, which needs to be addressed by
regularisation or smoothing of the gradients or displacements (Jameson and Vassberg
2000; Jaworski and Müller 2008; Schmidt and Schulz 2009). Lattice-based methods
where suitable shape modes are defined on skeleton grids are popular in aeronautical
design, such as Hicks-Henne bumps for aerofoils (Hicks and Henne 1978) or stacks of
B-spline curves to define turbo-machinery blade shapes (Shahpar 2011). While they
can give appropriate design freedom, they are cumbersome to extend beyond topologi-
cally rectangular planforms. Free-form deformation (FFD) with Radial Basis Function
(RBF) (Jakobsson and Amoignon 2007) is often used for the parametrisation of arbi-
trary shapes, however the global nature of the basis functions makes it computationally
expensive to ensure water tightness of the geometry at joins with non-deformable parts.
FFD with volume splines (Samareh 2004) or does allow to define a deformation field
on specific volumes, but the setup of suitable deformation volumes and appropriate
constraints can become onerous for complex geometry.

All the aforementioned methods suffer from two issues. Firstly, imposition of com-
plex constraints such as profile thickness or leading edge curvature has either not
yet been demonstrated or is not possible. Secondly, and more importantly, the op-
timal shape is produced as a deformed mesh, but not in CAD format as typically
required for multi-physics analysis or manufacturing. Reconstruction of the optimal
shape through some CAD parametrisation will typically incur approximations and im-
pair optimality. To overcome this bottleneck, CAD-based methods are needed which
update a CAD model within the optimisation loop. Two major approaches can be
distinguished in CAD-based shape optimisation. When used in gradient-based optimi-
sation, in both approaches a significant challenge is to compute the shape gradients,
i.e. the derivatives of a surface coordinate with respect to the CAD parameter.

‘Explicit’ CAD parametrisations use the parameters of the geometric construction
in the CAD feature tree as design variables (Fudge, Zingg, and Haimes 2005; Robinson
et al. 2012; Brock et al. 2012; Banovic et al. 2017). While this closely parallels the
manual design change and can employ traditional engineering parameters, the design
space is typically too sparse and cannot express some important modes. Moreover,
explicit parametrisations are typically limited to a specific shape such as a 3-D blade.

‘Implicit’ CAD parametrisations work with the boundary representation (BRep) of
the geometry which is commonly represented as a set of B-Spline or NURBS surface
patches in the STEP or IGES format. The surface displacement is linear in the position
of the B-spline control points, and if the deformation is expressed on a single patch
with clamped edges, the computation of the shape derivatives is trivial and easy to
use in optimisation (Fudge, Zingg, and Haimes 2005; Mart́ın et al. 2012; Andrés et al.
2010).

CAD models of complex geometry, however, describe the surface with a net of
patches, and constraints need to be imposed on the control point movement in order
to retain geometric continuity across patch interfaces such as water-tightness, tangency
or curvature. The NURBS-based Parametrisation with Complex Constraints (NSPCC)
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method of Xu et al. (2013) is able to ensure patch continuity under design deformation.
The approach has been successfully demonstrated on automotive ducts (Xu, Jahn,

and Müller 2013), turbomachinery blades (Xu et al. 2015), aircraft wing-belly fairings
(Mykhaskiv et al. 2017), and automotive wing mirrors (Myhkaskiv 2019).

This paper further develops and investigates the NSPCC approach in a number
of aspects. Firstly, the shape deformation modes arising from applying SVD to the
constraint matrix are analysed to gain insight into the preconditioning effect that
NSPCC exhibits for very rich design spaces. Secondly, the influence of the SVD cut-off
threshold σT on the design space and ultimately the convergence of the optimisation
and the obtained reduction in objective is investigated.

The paper is organised as follows: Section 2 introduces the adjoint method, Section
3 NURBS surfaces. Section 4 presents the NSPCC approach and discusses details such
as the deformation modes, cut-off σT and number of test points. Constraint recovery
is discussed in Section 5. The optimisation framework and optimisation results are
shown in Sections 6, 7 and 8. Finally, conclusions are given in Section 9.

2. The adjoint approach

Gradient-based optimisations require computation of the derivative of the objective
such as drag or pressure drop with respect to the design variables. This can be achieved
using finite differences, complex variable methods or tangent linearisation, however
all of these approaches incur the cost of an additional CFD solve for each design
variable. The adjoint approach (Pironneau 1974; Jameson 1988; Giles and Pierce 2000)
on the other hand computes the entire gradient vector for one objective in a single
computation of similar cost as the flow simulation. In this work, we use the discrete
adjoint method (Giles et al. 2003), as a) it provides a derivative that is consistent with
the discretised primal, and b) as it can be produced with Automatic Differentiation
software tools. The discretised steady-state flow equations can be written as

R(U(xV ),xV ) = 0,

where R is the conservative residual of the flow equations, U is the state and xV The
adjoint equations can be written as

ATv = g,

where AT is the transpose of the system Jacobian A = ∂R
∂U , v = ∂J

∂R is the adjoint

solution and g = ∂J
∂U only depends on the scalar objective function J , but not on the

design variable α.
The adjoint approach allows to compute the sensitivities of J with respect to all N

design variables α in a single computation of comparable cost to the flow, so

dJ

dα
=
∂J

∂α
+
∂J

∂R

∂R

∂α
=
∂J

∂α
+ vT f.

The direct dependence of J on α, e.g. if J is defined on the design surface, is straight-
forward to compute and omitted for simplicity in the following.

Using the chain rule of calculus, the differentiation of the remaining term ∂J
∂R

∂R
∂α
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can be separated as

∂J

∂R

∂R

∂α
=
∂J

∂R

∂R

∂xV

∂xV
∂xB

∂xB
∂α

= vT
∂R

∂xV

∂xV
∂xB

∂xB
∂α

. (1)

where xV are the volume grid and xB the surface grid coordinates. The term ∂R
∂xV

on
the right hand side is computed by differentiating the flux and metrics computation
of the flow solver w.r.t. the mesh coordinates. The second term ∂xV

∂xB
arises from dif-

ferentiating the volume mesh relaxation. The final term ∂xB

∂α requires a differentiation
of the parametrisation.

As presented, Eq. 1 suggests to compute the geometric derivatives in forward mode,
i.e. perturbing a design variable and cascading this through the computational chain in
the same direction as the primal geometry. This approach would require to perform the
geometric computation for each design variable. As an alternative, we could transpose
Eq. 1 and compute the derivative in reverse or adjoint mode, which incurs only a single
geometric computation for the entire gradient vector. Forward-mode differentiation is
arguably much simpler, and as the computational cost of the geometric perturbation
is negligibly small compared to the flow simulation (Xu, Jahn, and Müller 2013), we
have used the forward approach in this work.

3. NURBS surface patches

NURBS are widely used to describe geometries. A NURBS patch is defined as (Piegl
and Tiller 2012):

S(u, v) =

n∑
i=0

m∑
j=0

Ni,p(u)Nj,q(v)ωi,jPi,j

n∑
i=0

m∑
j=0

Ni,p(u)Nj,q(v)ωi,j

0 ≤ u, v ≤ 1, (2)

where Pi,j are the control point coordinates, ωi,j the corresponding weights, Ni,p(u)
and Nj,q(v) the p-th and q-th degree B-spline basis functions defined in the following
knot vectors:

{0, . . . , 0︸ ︷︷ ︸
p+1

, up+1, . . . , ui, . . . , ur−p−1, 1, . . . , 1︸ ︷︷ ︸
p+1

}

{0, . . . , 0︸ ︷︷ ︸
q+1

, vq+1, . . . , vj , . . . , vs−q−1, 1, . . . , 1︸ ︷︷ ︸
q+1

}

where r = n+ p+ 1 and s = m+ q+ 1. Ni,p(u) and Nj,q(v) are given by the following
expression:

Ni,0(u) =

 1 if ui ≤ u < ui+1

0 otherwise

Ni,k(u) =
(u− ui)
ui+k − ui

Ni,k−1(u) +
(ui+k+1 − u)

ui+k+1 − ui+1
Ni+1,k−1(u). (3)
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4. NURBS-based parametrisation with complex constraints

4.1. Testpoint approach for constraint imposition

The BRep of a complex geometry arising from a CAD construction is typically repre-
sented with a number of NURBS surface patches that abut or intersect. The interfaces
between surfaces require at least G0 continuity (watertightness), but for immersed sur-
faces typically G1 (tangency) or in case of wing and blade profiles G2 (curvature) to
avoid pressure spikes.

NSPCC is a novel approach to discretely impose geometric constraints on Boundary
representations (BRep) which naturally provides a parametrisation with orthogonal
modes (Xu, Jahn, and Müller 2013; Xu et al. 2015; Zhang, Jesudasan, and Müller
2019). NSPCC evaluates discrete constraint equations in sets of test points that are
distributed along patch interfaces as illustrated in Fig. 1. B-splines are polynomials
and given a sufficient number of test points, geometric continuity to machine precision
can be guaranteed. NURBS surfaces on the other hand are rational, however still
possess regularity. Hence a sufficient number of test points can ensure that the error
in constraint satisfaction is below a required geometric tolerance. Estimation formulae
for the test point number are given in Sec. 4.4.

Figure 1. NURBS control points and test points along an interface shared between two NURBS patches.

G0 continuity can be formulated as

G0 = XS,L −XS,R = 0, (4)

where XS,L and XS,R are the test point coordinates on the left and right patches of
the interface. The G1 continuity constraint is formulated as

G1 = nL × nR = 0, (5)

where nL and nR are the unit normal vectors of the tangent plane at the test points
on either side of the patch interface,

n =
(
∂Xs

∂u
× ∂Xs

∂v
)∥∥∥∥∂Xs

∂u
× ∂Xs

∂v

∥∥∥∥ , (6)

where u and v are the parametric coordinates of the surface as introduced in equation
(2).
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The test point framework is not limited to continuity constraints but supports the
formulation of arbitrary constraints at test points. E.g. Xu et al. (2015) formulate
thickness constraints by requiring a minimal distance between test points on opposite
blade surfaces. Mykhaskiv et al (2018) constrain surface curvature in test points to
enforce a minimal trailing edge radius of a turbomachinery blade.

Let G denote the set of constraint equations at all test points. Assuming a feasible
design iterate n, i.e. Gn = 0, any design change needs to remain feasible, Gn+1 = 0.
Linearising the change in feasibility results in

Gn+1 −Gn =

N∑
i=1

∂G

∂Pi
δPi = CδP = 0, (7)

where δPi is the displacement of the homogeneous coordinate of control point Pi. To
maintain the continuity constraints. The matrix C is termed constraint Jacobian. It
has MC rows and in the general case of NURBS 4 × N columns, where MC is the
number of constraint equations, N is the number of NURBS control points. To retain
feasibility, any control point update δPi needs to reside in the nullspace of C.

The NSPCC approach uses a source-code implementation of NURBS patches which
can then be differentiated using Algorithmic Differentiation (AD) to compute the
elements in the constraint Jacobian C. The AD tool Tapenade (Hascoët and Pascual
2004) is applied to obtain entries in C.

4.2. Computing nullspace of the constraint matrix using SVD

The SVD factorises the constraint Jacobian C as

C = UΣVT , (8)

where U is a MC×MC unitary matrix and Σ is a MC×4N non-negative diagonal
matrix. V is a 4N×4N unitary matrix, its last (4N −r) columns span the nullspace of
C (Strang 2006), here r is the rank of C. To allow for finite precision arithmetic, a cut-
off threshold σT is defined below which singular values are considered zero and which
hence determines the numerical rank r′ and hence the numerical nullspace ker′(C)
(Foster and Davis 2013).

NSPCC uses the SVD basis vectors of the nullspace as a basis for the design space,
any feasible perturbations of control points can be expressed as their linear combina-
tions,

δP =

4N−r′∑
k=1

vk+r′δαk = VNδα, (9)

where δαk, k = 1, 2, ..., 4N − r′ are the perturbations of design parameters, and
vr′+1, vr′+2, ..., v4N are the column vectors of V that form a basis for the nullspace.
Note that the V is a unitary matrix, which means all deformation modes vi are or-
thogonal to each other.

The choice of SVD cut-off σT determines the rank and hence the number of design
variables and their mode shapes. The effect of varying σT is examined in Sec. 4.4.
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An update of δP results in a surface perturbation

∆S =

n∑
i=0

m∑
j=0

Ni,p(u)Nj,q(v)δPi,j . (10)

and a new NURBS surface

Sn+1 = Sn + ∆S. (11)

The gradient of the objective function w.r.t. the design variables α is

dJ

dα
=

dJ

dXs

∂Xs

∂P

∂P

δα
=

dJ

dXs

∂Xs

∂P
VN . (12)

Sample deformation modes for an automotive duct example are shown in Sec. 7.3.

4.3. Required number of test points

In the case of abutting (as opposed to intersecting) B-spline patches, the representation
in the parametric coordinate along the patch edge is a polynomial of order Nq. The
number of required test point pairs for a B-spline curve could be determined a-priori
by considering each non-zero knot-interval. Given Nq+1 distinct test points within
the knot vector interval that supports a section of the curve, the polynomial can be
matched exactly. The relationship between the number of knots Nk, the number of
control points Np and the order of the spline Nq is

Nk = Np +Nq (13)

The number of non-zero knot intervals is

Ni = (Nk − 1)− 2(Nq − 1)−NM (14)

where NM is the number of zero knot intervals because of internal multiplicities. From
Eq. (13) and Eq. (14), the number of non-zero knot intervals becomes

Ni = Np −Nq + 1−NM (15)

In each interval we then need Nq+1 test points to fit the polynomial exactly, for the
left side of a patch edge with Np control points, we hence need ML test points

ML ≥ (Nq+1)(Np −Nq + 1−NM ),

similarly for the right side MR. Assuming a regular spacing of knots, the number of
required test points MT,E along edge E then becomes

MT,E ≥ max(ML, MR). (16)

The SVD filters out redundant constraints, it is hence not penalising to imposing
an excessive number of test points. To allow for non-regular knot-intervals, and avoid
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a detailed analysis of how mismatched knot intervals either side align, we use

MT,E ≥ fT max(ML, MR)

with the safety factor fT typically chosen as 1.2 ≤ fT ≤ 1.5. In the typical case of
equal polynomial orders Nq|L = Nq|R this becomes

MT,E ≥ fT (Nq+1)(max(Np|L, Np|R)−Nq + 1−NM ). (17)

The exactness argument employed for B-Splines does not carry over straightfor-
wardly to intersecting patches and/or non-rational functions in NURBS. This could
be accommodated by increasing the factor fT , however in practice we have not found
this to be necessary. A study of the effect of varying the parameter fT can be found
in (Zhang et al. 2016)

4.4. Effect of cut-off value and effective rank

Equation (9) indicates the number of design parameters in α is (4N−r′). For a specific
case, N is a constant, so the number of design parameters is dependent on r′ and hence
the choice of σT .

In the case ofG0 continuity, a distinct drop-off in singular values is typically observed
as shown in Fig. 2(a). A suitable choice of the cut-off σT is then any value in the range
of rapid drop of singular value, with very little effect on the numerical rank r′.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0  100  200  300  400  500  600  700  800

S
in

g
u
la

r 
v
a
lu

e

Number of singular value

Singular value: G0

(a) G0

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0  200  400  600  800  1000  1200  1400  1600

S
in

g
u
la

r 
v
a
lu

e

Number of singular value

Singular value: G1

(b) G1

Figure 2. Singular values when imposing G0 (left) and G1 (right) continuity constraints.

The drop-off in singular values is much more gradual for G1 and higher continuity
requirements, see Fig 2(b). In this case the value of the numerical rank r′ will depend
on the choice of σT . Choosing a higher σT will result in modes that have a larger
effect on feasibility to be included in the design space. While this enlarges the design
space and may lead to lower values of the objective, feasibility may be impaired. In
turn, raising σT will require that an effective algorithm for constraint recovery can be
formulated, see Sec. 5.

Even for cases where a clear drop off in σ can be identified, the scaling of the
constraint equations in G affects the scaling of the SVD, choice of σT is case dependent.
To arrive at a robust computation of σT , we propose to determine the numerical rank
from CCT or CTC instead of the constraint matrix C. In infinite precision arithmetic,
both CCT and CTC share the same rank with C, but CTC provides a more stable
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Figure 3. The comparison of singular values of CCT and C.

and effective rank for finite-precision arithmetic (Strang 2006). The effective rank is
determined as per following procedures in this study:

(1) Compute C∗ = CCT ,
(2) Calculate the singular values σ∗ of C∗,
(3) Estimate the cut-off value σT as

σ∗T = max(size(C∗))σ∗1ε, (18)

where σ∗1 is the largest singular value of C∗, and ε is the machine precision.

Figure 3 presents a comparison between the singular values of C∗ and C for an S-bend
air duct optimisation case (see Section 7). It indicates clearly that the singular values
of C∗ drop to machine zero much more rapidly compared to those of C. σ∗T is around
1.31× 10−5 in this case, using double precision arithmetic with ε = 2 · 10−16.

5. Continuity recovery step

We can distinguish three situation where a design iterate is not feasible, i.e. constraints
are violated: a) the initial design is not feasible, achieving feasibility is the first design
step; b) the constraint is non-linear, as e.g. is the case for G1, G2, and violation arises
from a finite-size step in the feasible direction; c) finite-precision arithmetic and/or a
choice of a high cut-off σT includes modes in the design space which have a small but
non-zero effect on feasibility. Fig. 4 demonstrates b) and c).

non-linear constraints

inaccurate nullspace

Figure 4. Violation geometric constraints due to nonlinearity and nullspace inaccuracy.

Given a constraint violation of δG, a linear approximation of the required change
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in control points δP is

∂G

∂P
δPr = CδPr = −δG, (19)

which does not have a unique solution. However, the SVD provides us with a basis for
the row space in v1..vr′ and the null-space vr′+1..v4N . In the row-space, the solution
to (19) is unique and produces an update that is orthogonal to the null-space, δPr /∈
ker(C), hence does not affect the design variables to linear approximation.

Given a constraint violation of δG, the correction in row space is

VRδβR + δG = 0, (20)

where VR contains the row space basis vectors v1..vr′ .
Except for G0, (19) is non-linear, thus an iterative method is required to solve it.

The iterative recovery steps will continue until the deviation value from exact G1 is
below the chosen threshold value. If design steps are small, it is sufficient to retain the
SVD and the basis VR for the recovery iterations. In practice, G0 (watertightness) is a
constraint that has to be satisfied to machine precision, e.g. to ensure robust meshing,
while deviations in G1, G2 and other geometric constraints may be acceptable up to
the magnitude of manufacturing tolerances. In our implementation we therefore solve
(20) first for δGo, then for the remaining constraints. Demonstration of recovery steps
are presented in Section 7.5.

6. Optimisation framework

The geometric elements presented in the preceding sections, namely design space def-
inition, gradient computation, design (tangent) and normal (recovery) steps, can be
integrated effectively into the optimisation loop as shown in Fig. 5. A number of ad-
vantages arise from this:

CAD output Integrating the CAD description into the design loop enables to start
with a CAD geometry, and produce an optimal CAD geometry at convergence.
A valid CAD model is produced at any stage, either for inspection and compu-
tational steering, or available upon premature termination of the loop.

Minimal user input A design parametrisation through the NURBS control points
arises automatically from the initial CAD input, in our experience that typically
provides a design space that is sufficiently rich.

Complex constraints A wide variety of constraints can be imposed using the test
point framework. As the design space is derived from the constraint Jacobian
using SVD, imposing redundant constraints does not impair the convergence of
the optimiser.

Smoothness The NURBS surface description is by construction smooth, hence re-
quires no regularisation that could impair optimality.
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Figure 5. The CAD-based shape optimisation framework.
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7. Optimisation testcase: S-bend duct

7.1. Case description and parametrisation

An automotive S-bend climatisation duct is optimised to minimise pressure loss. The
Reynolds number is 300, based on the height of the duct. The Inlet velocity is 0.1
m/s, with zero back pressure and non-slip walls imposed as boundary conditions. The
objective function is the mass-averaged total pressure loss between inlet and outlet,

J =

∫
in ptot(u · n)dS−

∫
out ptot(u · n)dS∫

in(u · n)dS
, (21)

where ptot is the total pressure, u is the velocity vector, n is the normal direction and
S is the cross sectional area.

7.2. CAD parametrisation

The S-Bend benchmark testcase was provided by Volkswagen for the About Flow
and IODA benchmarks1. It is part of an automotive climate duct, the objective is to
minimise total pressure losses. The baseline shape (Fig. 6) consists of 30 surfaces, with
inlet and outlet legs being fixed, while the eight patches forming the middle, cranked
section are allowed to move. The moveable section consists of 4 wider and 4 narrower
patches, with 96 (16×6) and 64 (16×4) control points, respectively, resulting in 640
control points on design surfaces in total.

Figure 6. BRep of the S-bend air duct. Left: patch topology. Right: control points of the moveable middle
cranked section.

The test point approach is used to impose G1 continuity across the interfaces of the
8 deformable surfaces. 30 pairs of test points are imposed to each common edge based
on the estimate of (17).
G2 continuity is imposed between moveable and non-moveable surfaces by fixing

the first two rows of control points on free patches adjacent to these interfaces, fixing
a total of 80 control points.

In this B-spline case, the weights of control points are not perturbed. Each of the
moveable 480 control point can move in (x, y, z) directions, resulting in 1449 degrees
of freedom (DoF) in total. Performing the SVD with a cut-off value is 10−6 results in
a numerical rank of r′ = 215, and a size of the design space of 3N − r′ = 1225.

1http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/
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7.3. Deformation modes arising from the SVD

It is instructive to analyse the structure of the design space. Deformation modes
with singular values close to machine precision can be considered to be in the exact
nullspace. Fig. 7 shows the magnitude of the normal surface displacement associated
with modes α1223 and α1224. The modes are contained within a single patch, hence do
not affect the constraint equations.

Figure 7. Example deformation modes α1223 (left) and α1224 (right), which are in the exact nullspace.

Fig. 8 shows the first two deformation modes below the cut-off, α1 and α2. Both
modes straddle the interfaces either side of the narrow moveable patches, hence
strongly affect the G1 constraint equations along either interface with the wider move-
able patches. By construction, the design modes are ordered by their effect on the
constraint equations, but not e.g. by their effect on the objective. However, all modes
are orthogonal by the unitary nature of V. The convergence rate of NSPCC to the
optimum is hence not affected by the number of design variables, i.e. the choice of σT .

Figure 8. Deformation modes α1 (left) and α2 (right), just below the SVD cut-off σT .

7.4. Solvers and parameters

The in-house CFD and adjoint code GPDE (Jones, Christakopoulos, and Müller 2011)
is used GPDE is an incompressible, viscous, steady flow solver on unstructured grids. A
discrete adjoint solver is used to obtain the sensitivity of objective function w.r.t. sur-
face nodes, ∂J

∂xS
. Source-transformation AD with Tapenade (Hascoët and Pascual 2004)

is applied to the pressure-correction loop to derive a discrete adjoint. The differentiated
routines are then assembled in a hand-written driver code to improve performance,
exploiting the fixed-point nature of the primal. The mesh has 41,044 hexahedra and
43,848 nodes as shown in Fig. 9.

A simple steepest descent method optimisation algorithm with Armijo line search
is used.
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7.5. Effect of cut-off value on optimisation results

The choice of SVD cut-off σT plays an important role in controlling the size of the
design space in cases with the more gradual decay of singular values observed with
constraints other than G0. A range of cutoff values 2 · ·10−10 ≤ σT ≤ ·10−4 is used,
resulting in numerical ranks of 490 ≤ r′ ≤ 341 as shown in Tab. 1. The effective SVD
threshold computed with (18) is σT = 9.9·10−7, resulting in a rank of r′ = 374, hence
essentially identical to σT = ·10−6 with a rank of r′ = 375, and not shown separately
in the table.

Table 1. Cut-off values, corresponding numerical

rank, and final G1 deviation.

Cut-off value Rank G1 deviation value

2× 10−10 490 8.81× 10−5

10−7 387 1.15× 10−6

10−6 375 1.17× 10−6

10−5 359 2.27× 10−6

10−4 341 1.68× 10−5

The recovery step is crucial in enabling the use of higher cut-off thresholds σT .
Continuity recovery steps (see Sec. 5) are applied at each design iteration with a

threshold of·10−5, as suggested by Xu et al. (2013). Without recomputing the nullspace
all mid-value choices of σT manged to satisfy the constraints, while the most restrictive
σT = 2× 10−10 and most permissive σT = 2× 10−4 did not.

Figure 10 shows the deviation values from exact G1 with and without recovery
steps. These figures indicate clearly that the G1 deviation value are negligible after
applying recovery steps, compared to those without recovery steps. Specifically, in
the present optimisation case, two recovery steps in every iteration can bring the G1

deviation value below the chosen threshold 10−5.
Convergence histories of the objective function corresponding to different cut-off

values are given in Fig. 11. A more stringent cutoff of σT = 2 × 10−10 allows to
reduce the objective by only 20%, exhibiting the slowest convergence rate. Choices of
10−7 ≤ σT ≤ 10−4 all show much better reduction of the objective with 22.3% and
faster convergence.

Figure 12 shows cross sections at the middle of the cranked section for the different
cut-off values. Consistent with the behaviour of the objective shown in Fig. 11, a
low cut-off (σT = 2 × 10−10) provides a restricted design space, leading to a limited
deformation and consequently a less effective design with higher objective. Results
are relatively independent of the choice of cut-off in the range of 10−7 ≤ σT ≤ 10−4,

Inlet

Outlet

Non-slip wall

Figure 9. Hexahedral mesh of S-bend air duct.
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hence also including the robust threshold computation of (18), with very similar cross-
sectional shapes, convergence and objective.
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(a) The cross section position

(b) Initial (c) 2× 10−10 (d) 10−7

(e) 10−6 (f) 10−5 (g) 10−4

Figure 12. Cross section shapes of S-bend before (b) and after (c-g) optimisation

Based on the comparison of cost function convergence histories, cross section shapes
and the G1 deviation values, it can be seen that values of 10−7 ≤ σT ≤ ·10−5, offer
the best choice among all chosen cut-off values. The value provided by the robust
estimation of (18) is in the middle of this interval. Larger cut-off values do not offer
additional relevant design modes which would enable a lower objective value, but may
compromise constraint recovery. Smaller cut-off values adversely affect the richness of
the design space with impaired optimality.

7.5.1. Analysis of S-Bend optimisation results

The geometry before and after optimisation are illustrated in Fig. 13, where a large
deformation can be observed on the design surfaces, especially the squeezed-in sides.
Constraints were only imposed on continuity between patches and the smoothness of
the deformations can clearly be observed. Manufacturing constraints have not been
imposed in this case, but could be included in the test-point framework with radius
constraints or by imposing G1 constraints between patches at mold split to ensure
that the part can extracted from the mold.

To have a better understanding on the result we plot the contour plots of velocity
magnitude at different cross sections, as shown in Fig. 14 and 15. The streamlines of
the flow are given in Fig. 17. It can be seen that the initial flow field has a strong
secondary flow, and the cross-sectional cuts are highly non-uniform in terms of veloc-
ity magnitude. This kind of secondary flow in bent ducts is known as Dean vortices
(Berger, Talbot, and Yao 1983), which will increase the pressure loss. Figure 15 also
indicates that there is a large flow separation at the bottom of the outlet leg, which
will additionally gives rise to pressure drop.

16



Figure 13. Comparison between the initial (top) and optimised (bottom) shape.

Figure 14. Contour plots of velocity magnitude for the initial (left) and optimised (right) S-bend duct at

different cross sections along the flow direction.

Figure 15. Contour plots of velocity magnitude for the initial (left) and optimised (right) S-bend duct at a
cross section parallel to the inlet flow direction.

Two major mechanisms to reduce pressure loss can be identified. Firstly, the cross-
sectional area in the bend increases, which in turn reduces the pressure gradient normal
to the streamline required to turn the flow, as clearly visible with the lower pressure
on the outer radius of the first bend in Fig. 16. This results in increased pressure at the
inner bend, a reduced adverse pressure gradient exiting the bend, and hence a reduced
separation. As a result, lower total pressure loss is achieved after optimisation, which
is confirmed by the pressure distributions along the bend shown in Fig. 16.
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Figure 16. Pressure field distribution before (left) and after (right) optimisation.

Figure 17. The comparison of streamlines before (left) and after (right) the optimisation.

Secondly, the strongly deformed cross-sectional shape increases wetted area and
hence skin friction, but strongly inhibits the formation of secondary flow Dean vortices.
The hollowed sides in the optimal shape resembles strake-like shape, as illustrated in
Fig. 13. As a consequence of both loss-reducing mechanisms, the streamlines of the
optimised shape shown in Fig. 17 exhibit much reduced separation and secondary
motion.

8. Optimisation test case: U-bend cooling channel

To demonstrate the effect of including the NURBS weights in the design space, NSPCC
is applied to the optimisation of a turbo-machinery U-bend cooling channel (Verstraete
et al. 2013). The geometry and main dimensions of this U-bend are shown in Fig. 18.

Flow

(a) 3-D view of the U-bend cooling channel and

control points of design surfaces.

inlet

outlet

(b) Main dimensions of the U-Bend.

Figure 18. Parametrisation of the U-bend cooling channel.
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The baseline geometry is comprised of a circular bend with straight inlet and out-
let legs with square cross-sections. The inlet leg is long enough to guarantee a fully
developed flow at the entrance of the circular bend. The U-bend geometry consists of
22 NURBS surfaces in total. Only the bend, which is composed of 8 rectangular and 4
circular surfaces (shown in red in Fig. 18), is deformable. Each of the initially planar
surfaces has 24 (6×4) control points, each of the circular surfaces has 16 (4×4) control
points. As a result, there are in total 256 control points for the bend. G2 continuity
to the fixed patches is imposed by freezing the first row of control points (shown in
black) and restricting the movement of the second row (blue) in the planes of the
fixed walls. This results in 192 control points that can move in three and 32 control
points can move in two directions. Wtih NURBS weights included in the design space,
this resulting in a total of 864 degrees of freedom before G0, G1 constraints between
moveable patches are imposed.

8.1. Solver and parameters

The design objective for this benchmark case is to reduce the total pressure loss in
the bend, the flow has Reynolds number: 15000, based on the hydraulic diameter.
The in-house solver STAMPS (Müller, Mykhaskiv, and Hückelheim 2018) is employed
to solve the flow equations and provide the sensitivity of cost function w.r.t. the
mesh coordinates. STAMPS uses a compressible formulation, the testcase is run at
Ma=0.1. Turbulence is modelled with the Spalart-Allmaras (SA) model, heat transfer
is neglected in this study. The mesh is regular with 167K nodes and 177K hexahedra,
boundary layer refinement supports low-Re wall treatment with y+ ≈ 1.

Table 2. Computational cost of the NSPCC optimisation
workflow, U-Bend with fixed NURBS weights.

Item Run time (min) %

Adjoint 2375.15 62.92%

Primal 1194.01 31.63%

NSPCC 153.69 4.07%

Vol. Mesh deformation 28.05 0.74%

Flow sensitivity assembly 24.19 0.64%

Total 3775.09 100%

Tab. 2 breaks down the computational cost for a typical run. Even though only
forward mode differentiation is used for the geometric kernel, its computational time
is only about 4% of the total CPU time.

8.2. Optimisation results

The BFGS algorithm is chosen as optimiser, which builds up an approximation of the
inverse Hessian for a given parametrisation with a fixed set of shape modes. NSPCC
on the other hand computes a new design space at every evaluation of the constraint
matrix C and its SVD. To use BFGS with NSPCC, we hence chose to freeze the design
space for a number of iterations, 4 for this testcase, and then re-evaluate C and restart
BFGS. Although the restart limits the accuracy of the Hessian approximation, BFGS
shows improved convergence rate and much lower objectives compared to Steepest
Descent (Fig. 19).
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Including the NURBS weights as design parameters results in further improvements:
with free weights the total pressure loss is reduced by around 25% after 35 iterations,
while fixed weights result in a 23.1% reduction.

(a) Initial (b) Optimised, fixed weights (c) Optimised, free weights

Figure 20. Shape optimisation of the U-bend cooling channel.

Figure 20 presents the comparison of velocity magnitude in the middle plane before
and after optimisation using a parametrisation which fixes the NURBS weights, and
comparing this to a case that includes the NURBS weights in the design space. In
both variants, the optimal shape significantly reduces the pressure loss in the channel
using three major mechanisms. The optimisation with free weights demonstrates three
mechanisms which contribute to the reduction in loss. The same mechanisms can be
identified in the case with fixed weights, but to a lesser extent.

The major mechanism is the enlargement of the inner bend radius as clearly shown
in Fig. 20. The radial pressure gradient of a turning streamline is proportional to v2/r,
furthermore the low pressure at the inner bend of the initial geometry results in a high
velocity as visible in the left part of Fig. 21. Enlarging the inner radius results in a
dramatic reduction of flow velocity and pressure gradient at the inner bend, see right
part of Fig. 21.

The increased minimal pressure in the bend reduces the adverse pressure gradient
the flow experiences at the exit of the bend. The flow separation is further reduced
by a much more gradual opening of the channel cross section, compared to the case
of fixed weights (Fig. 20, middle) or the initial geometry (Fig. 20, left).

The final mechanism is the deformation of the cross-sectional shape of the apex
of the bend from a square into a rectangular cross-section which is elongated in the
direction of the turning axis. The reduction of the channel width in the radial direction
results in a decimation of Dean vortices, and hence a reduction in secondary flow losses.
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Figure 21. Velocity magnitude at different locations of the optimised geometry, left: initial geometry, right:

optimised including NURBS weights.

It can be observed that the inclusion of the NURBS weights in the design space
leads to an improvement in flow behaviour. Fig. 19 demonstrates that the case with
fixed weights shows the same changes as the case with free weights, but to a reduced
extent, which explains that the fixed-weight case achieves only 23.1% reduction in
pressure loss, compared to 25% for the free weight case.

9. Conclusion

The NUBRS-based parametrisation approach for CAD-based shape optimisation,
NSPCC, has been presented and further investigated and developed. NSPCC derives
the design space automatically from a boundary representation (BRep) of the geom-
etry. The design space is derived from the SVD of the Jacobian of a set of discrete
constraint equations at sets of testpoints.

The paper investigated a number of parameters that need to be determined for the
application of the method. A formula for estimating the required number of testpoints
at patch interfaces has been given. It is based on the order of B-spline degree and the
number of control points on either surface, hence can be evaluated straightforwardly. A
robust method for estimating a suitable cut-off for the singular value decomposition has
been presented. The method does not require to manually determine any scalings, and
is hence robustly and automatically applicable as shown in an industrial testcase. The
resulting design modes from the SVD have been evaluated and analysed, explaining
the good preconditioning behaviour of the approach. A methodology to achieve or
recover feasibility of geometric constraints has been shown. It exploits the row-space
which is a free by-product of computing the SVD for the design space. The NSPCC
approach produces its own design space automatically, including number and character
of design modes. The paper has presented a successful extension to use quasi-Newton
approaches with the NSPCC approach by retaining the SVD for a number of design
steps.

The developments have been demonstrated on two industrial duct cases, a laminar
automotive S-bend air duct and a turbulent U-bend turbo-machinery cooling chan-
nel. In both cases NSPCC worked fully automatically from the BRep and achieved
reductions in pressure loss by 22-25%. Analysis of the flow in the optimised shape
confirms that the adjoint sensitivity calculation enables an accurate trade-off between
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competing mechanisms such as primary wall friction and secondary flow losses.
The NSPCC parametrisation is able to effectively express a very rich design space.

Although each case comprises hundreds of modes, by construction they are orthogonal
and good convergence in 35 design iterations can be achieved. The inclusion of the
NURBS weights as design variables, and the use of quasi-Newton optimisers has been
shown to lead to superior results.
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